Niko's Project Corner

Business Intelligence at other sites

Analyzing NYC Taxi dataset with Elasticsearch and Kibana

(19th March 2017)

The NYC taxi­cab dataset has seen lots of love from many data sci­en­tists such as Todd W. Schei­der and Mark Litwintschik. I de­cided to give it a go while learn­ing Clo­jure, as I sus­pected that it might be a good lan­guage for ETL jobs. This ar­ti­cle de­scribes how I loaded the dataset, nor­mal­ized its con­ven­tions and columns, con­verted from CSV to JSON and stored them to Elas­tic­search.

Languages: Clojure
Tags: GitHub JVM Elasticsearch Databases Business Intelligence Kibana
GitHub: nikonyrh/nyc-taxi-data

An efficient schema for hierarchical data on Elasticsearch

(20th November 2016)

Many busi­nesses gen­er­ate rich datasets from which valu­able in­sights can be dis­cov­ered. A ba­sic start­ing point is to an­alyze sep­arate events such as item sales, tourist at­trac­tion vis­its or movies seen. From these a time se­ries (to­tal sales / item / day, to­tal vis­its / tourist spot / week) or ba­sic met­rics (his­togram of movie rat­ings) can be ag­gre­gated. Things get a lot more in­ter­est­ing when in­di­vid­ual data points can be linked to­gether by a com­mon id, such as items be­ing bought in the same bas­ket or by the same house hold (iden­ti­fied by a loy­alty card), the spots vis­ited by a tourist group through out their jour­ney or movie rat­ings given by a speci­fic user. This richer data can be used to build rec­om­men­da­tion en­gi­nes, iden­tify sub­sti­tute prod­ucts or ser­vices and do clus­ter­ing anal­ysis. This ar­ti­cle de­scribes a schema for Elas­tic­search which sup­ports ef­fi­cient fil­ter­ing and ag­gre­ga­tions, and is au­to­mat­ically com­pat­ible with new data val­ues.

Languages: Python
Tags: Business Intelligence Databases Elasticsearch